Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
J Leukoc Biol ; 115(3): 483-496, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-37947010

RESUMO

Gut dysbiosis is linked to type 1 diabetes mellitus (T1D). Inulin (INU), a prebiotic, modulates the gut microbiota, promoting beneficial bacteria that produce essential short-chain fatty acids for immune regulation. However, how INU affects T1D remains uncertain. Using a streptozotocin-induced (STZ) mouse model, we studied INU's protective effects. Remarkably, STZ + INU mice resisted T1D, with none developing the disease. They had lower blood glucose, reduced pancreatic inflammation, and normalized serum insulin compared with STZ + SD mice. STZ + INU mice also had enhanced mucus production, abundant Bifidobacterium, Clostridium cluster IV, Akkermansia muciniphila, and increased fecal butyrate. In cecal lymph nodes, we observed fewer CD4+Foxp3+ regulatory T cells expressing CCR4 and more Foxp3+CCR4+ cells in pancreatic islets, with higher CCL17 expression. This phenotype was absent in CCR4-deficient mice on INU. INU supplementation effectively protects against experimental T1D by recruiting CCR4+ regulatory T cells via CCL17 into the pancreas and altering the butyrate-producing microbiota.


Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Ilhotas Pancreáticas , Camundongos , Animais , Inulina/farmacologia , Prebióticos , Modelos Animais de Doenças , Linfócitos T Reguladores , Butiratos/farmacologia , Fatores de Transcrição Forkhead
2.
Int Endod J ; 57(1): 64-77, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814380

RESUMO

AIM: To determine the cytotoxicity mechanism of 2.5% calcium hypochlorite [Ca(OCl)2 ] in L929 fibroblasts and the effect of this solution on human osteoblast-like cells (Saos-2) mineralization, compared to that of 2.5% sodium hypochlorite (NaOCl). METHODOLOGY: L929 fibroblasts were exposed to Ca(OCl)2 and NaOCl at different dilutions for 10 min. Cell metabolism was assessed by methyl-thiazole-tetrazolium (MTT); lysosome integrity, by neutral red (NR) assay; type of cell death, by flow cytometry (apoptosis/necrosis); cytoskeleton, by actin and α-tubulin fluorescence and cell ultrastructure, by transmission electron microscopy (TEM). The alkaline phosphatase (ALP) activity and mineralized nodule formation were determined in Saos-2 by thymolphthalein release and alizarin red staining (ARS), respectively. The data were analysed by two-way anova and Bonferroni's post-test (α = .05). RESULTS: Ca(OCl)2 promoted higher cell viability and a lower percentage of apoptosis and necrosis than NaOCl (p < .05). Ca(OCl)2 and NaOCl decreased cell metabolism and lysosome integrity, induced the breakdown of microtubules and actin filaments, promoted alterations of rough endoplasmic reticulum and disruption of mitochondrial cristae. Additionally, Ca(OCl)2 did not induce ALP activity and had no effect on mineralized nodules formation. CONCLUSIONS: Although Ca(OCl)2 and NaOCl promoted the same cytotoxicity mechanism, Ca(OCl)2 was less cytotoxic than NaOCl. As for ALP activity, no differences were observed between NaOCl and Ca(OCl)2 . The production of mineralized nodules induced by Ca(OCl)2 was lower than those induced by NaOCl, but was not different from those induced by the control group.


Assuntos
Fibroblastos , Hipoclorito de Sódio , Humanos , Hipoclorito de Sódio/toxicidade , Necrose , Osteoblastos , Irrigantes do Canal Radicular/farmacologia
3.
Toxicon ; 233: 107259, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37595687

RESUMO

Immune system hyperactivation is involved with clinical severity and pathological alterations during scorpion envenomation. In a murine model, mice inoculated with a lethal dose of Tityus serrulatus scorpion venom presented mitochondrial swelling in cardiomyocytes, with other structures such as sarcomeres and intercalated disks preserved. Treatment with dexamethasone or knockout animals to the interleukin-1ß receptor do not undergo mitochondrial changes in cardiomyocytes during envenomation.


Assuntos
Picadas de Escorpião , Venenos de Escorpião , Animais , Camundongos , Miócitos Cardíacos , Dilatação Mitocondrial , Modelos Animais de Doenças , Venenos de Escorpião/toxicidade , Escorpiões
4.
Diagnostics (Basel) ; 13(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37296771

RESUMO

Sudden unexpected death (SUD) is a fatal event that occurs in an apparently healthy subject in a way that such an abrupt outcome could have not been predicted. SUD-including sudden intrauterine unexplained death (SIUD), sudden neonatal unexpected death (SNUD), sudden infant death syndrome (SIDS), sudden unexpected death of the young (SUDY), and sudden unexpected death in the adult (SUDA)-occurs as the first manifestation of an unknown underlying disease or within a few hours of the presentation of a disease. SUD is a major unsolved, shocking form of death that occurs frequently and can happen at any time without warning. For each case of SUD, a review of clinical history data and performance of a complete autopsy, particularly focused on the study of the cardiac conduction system, were carried out according to the necropsy protocol devised by the Lino Rossi Research Center, Università degli Studi di Milano, Italy. Research cases collected and selected for this study were represented by 75 SUD victims that were subdivided into 15 SIUD, 15 SNUD, 15 SUDY, and 15 SUDA victims. After a routine autopsy and clinical history analysis, death remained unexplained, and hence a diagnosis of SUD was assigned to 75 subjects, which included 45 females (60%) and 30 (40%) males ranging in age from 27 gestational weeks to 76 years. Serial sections of the cardiac conduction system disclosed frequent congenital alterations of the cardiac conduction system in fetuses and infants. An age-related significant difference in distribution among the five age-related groups was detected for the following anomalies of the conduction system: central fibrous body (CFB) islands of conduction tissue, fetal dispersion, resorptive degeneration, Mahaim fiber, CFB cartilaginous meta-hyperplasia, His bundle septation, sino-atrial node (SAN) artery fibromuscular thickening, atrio-ventricular junction hypoplasia, intramural right bundle branch, and SAN hypoplasia. The results are useful for understanding the cause of death for all SUD cases that were unexpected and would have otherwise remained unexplained, so as to motivate medical examiners and pathologists to perform more in-depth studies.

5.
Regen Ther ; 22: 79-89, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36712958

RESUMO

Introduction: Diabetes mellitus (DM) is a chronic disease and a major cause of mortality and morbidity worldwide. The hyperglycemia caused by DM induces micro and macrovascular complications that lead, among other consequences, to chronic wounds and amputations. Cell therapy and tissue engineering constitute recent therapeutic alternatives to improve wound healing in diabetic patients. The current study aimed to analyze the effectiveness of biocuratives containing human mesenchymal stem cells (MSCs) associated with a hydrogel matrix in the wound healing process and related inflammatory cell profile in diabetic mice. Methods: Biocuratives containing MSCs were constructed by 3D bioprinting, and applied to skin wounds on the back of streptozotocin (STZ)-induced type 1 diabetic (T1D) mice. The healing process, after the application of biocuratives with or without MSCs was histologically analyzed. In parallel, genes related to growth factors, mast cells (MC), M1 and M2 macrophage profiles were evaluated by RT-PCR. Macrophages were characterized by flow cytometry, and MC by toluidine blue staining and flow cytometry. Results: Mice with T1D exhibited fewer skin MC and delayed wound healing when compared to the non-diabetic group. Treatment with the biocuratives containing MSCs accelerated wound healing and improved skin collagen deposition in diabetic mice. Increased TGF-ß gene expression and M2 macrophage-related markers were also detected in skin of diabetic mice that received MSCs-containing biocuratives. Finally, MSCs upregulated IL-33 gene expression and augmented the number of MC in the skin of diabetic mice. Conclusion: These results reveal the therapeutic potential of biocuratives containing MSCs in the healing of skin wounds in diabetic mice, providing a scientific base for future treatments in diabetic patients.

6.
Pharmaceutics ; 14(11)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36365096

RESUMO

mTOR is a signaling pathway involved in cell survival, cell stress response, and protein synthesis that may be a key point in sepsis-induced cardiac dysfunction. Curcumin has been reported in vitro as an mTOR inhibitor compound; however, there are no studies demonstrating this effect in experimental sepsis. Thus, this study aimed to evaluate the action of curcumin on the mTOR pathway in the heart of septic mice. Free curcumin (FC) and nanocurcumin (NC) were used, and samples were obtained at 24 and 120 h after sepsis. Histopathological and ultrastructural analysis showed that treatments with FC and NC reduced cardiac lesions caused by sepsis. Our main results demonstrated that curcumin reduced mTORC1 and Raptor mRNA at 24 and 120 h compared with the septic group; in contrast, mTORC2 mRNA increased at 24 h. Additionally, the total mTOR mRNA expression was reduced at 24 h compared with the septic group. Our results indicate that treatment with curcumin and nanocurcumin promoted a cardioprotective response that could be related to the modulation of the mTOR pathway.

7.
Inflamm Res ; 71(12): 1535-1546, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36280620

RESUMO

OBJECTIVE AND DESIGN: Our research aimed to investigate the role of CD14 in pulmonary infection by Achromobacter xylosoxidans in an experimental murine model. METHODS: C57Bl/6 or CD14-deficient mice were infected intratracheally with non-lethal inoculum of A. xylosoxidans. At times 1, 3 and 7 days after infection, lungs, bronchoalveolar lavage and blood were collected. CD14 gene expression was determined by RT-PCR. The bacterial load in the lungs was assessed by counting colony forming units (CFU). Cytokines, chemokines, lipocalin-2 and sCD14 were quantified by the ELISA method. Inflammatory infiltrate was observed on histological sections stained with HE, and leukocyte subtypes were assessed by flow cytometry. In another set of experiments, C57Bl/6 or CD14-deficient mice were inoculated with lethal inoculum and the survival rate determined. RESULTS: CD14-deficient mice are protected from A. xylosoxidans-induced death, which is unrelated to bacterial load. The lungs of CD14-deficient mice presented a smaller area of tissue damage, less neutrophil and macrophage infiltration, less pulmonary edema, and a lower concentration of IL-6, TNF-α, CXCL1, CCL2 and CCL3 when compared with lungs of C57Bl/6 mice. We also observed that A. xylosoxidans infection increases the number of leukocytes expressing mCD14 and the levels of sCD14 in BALF and serum of C57Bl/6-infected mice. CONCLUSIONS: In summary, our data show that in A. xylosoxidans infection, the activation of CD14 induces intense pulmonary inflammatory response resulting in mice death.


Assuntos
Achromobacter denitrificans , Infecções por Bactérias Gram-Negativas , Receptores de Lipopolissacarídeos , Pneumonia , Animais , Camundongos , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo , Infecções por Bactérias Gram-Negativas/metabolismo
8.
Nat Commun ; 13(1): 4831, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35977933

RESUMO

Both T cells and B cells have been shown to be generated after infection with SARS-CoV-2 yet protocols or experimental models to study one or the other are less common. Here, we generate a chimeric protein (SpiN) that comprises the receptor binding domain (RBD) from Spike (S) and the nucleocapsid (N) antigens from SARS-CoV-2. Memory CD4+ and CD8+ T cells specific for SpiN could be detected in the blood of both individuals vaccinated with Coronavac SARS-CoV-2 vaccine and COVID-19 convalescent donors. In mice, SpiN elicited a strong IFN-γ response by T cells and high levels of antibodies to the inactivated virus, but not detectable neutralizing antibodies (nAbs). Importantly, immunization of Syrian hamsters and the human Angiotensin Convertase Enzyme-2-transgenic (K18-ACE-2) mice with Poly ICLC-adjuvanted SpiN promotes robust resistance to the wild type SARS-CoV-2, as indicated by viral load, lung inflammation, clinical outcome and reduction of lethality. The protection induced by SpiN was ablated by depletion of CD4+ and CD8+ T cells and not transferred by antibodies from vaccinated mice. Finally, vaccination with SpiN also protects the K18-ACE-2 mice against infection with Delta and Omicron SARS-CoV-2 isolates. Hence, vaccine formulations that elicit effector T cells specific for the N and RBD proteins may be used to improve COVID-19 vaccines and potentially circumvent the immune escape by variants of concern.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Camundongos , Nucleocapsídeo , Proteínas do Nucleocapsídeo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
9.
Food Res Int ; 155: 111039, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400428

RESUMO

The processing of cupuassu (Theobroma grandiflorum Schum) beans after fermentation gives a chocolate-like product, the cupulate. The high amount of pulp adhered to the seeds hinders the fermentation. Consequently, it is necessary to depulp the seeds to perform the process, even though the pulp contains important substrates for the formation of flavor precursors. To verify whether the complete or partial removal of the pulp influences the sensory characteristics of the product, fermentation was performed with three pulp concentrations (0, 7.5, and 15%) and two schemes of turning for aeration of the mass: fixed (R1) and according to the temperature (R2), in a total of six experiments (0R1, 0R2, 7.5R1, 7.5R2, 15R1 and 15R2). The beans were processed to obtain cupulates, which were submitted to tests performed with consumers, to express their preference and attributes (acceptance, purchase intent, Check All That Apply - CATA), and then to tests with a trained panel, the Quantitative Descriptive Profile (QDP) to characterize the samples. Both tests showed the consumers' perceptions that the cupulates have peculiar sensory characteristics. In the Consumer Test, through the Preference Mapping, all the samples of cupulates obtained from R1 conditions were preferred. In the penalty analysis, these same samples showed positive attributes that mask the negative attributes. Both CATA and QDP results showed that cupulate samples produced from seeds with a higher amount of pulp (15R1 and 15R2) had a higher number of positive mentions, for their fruity and floral flavors. The research also demonstrated that all samples gave the perception of an earthy taste, an important reason for consumer rejection, as well as a bad residual flavor. Thus, the results showed that the presence of the pulp in the fermentation environmental is important to the formation of flavor compounds and improving the sensory acceptance of the products.


Assuntos
Cacau , Chocolate , Chocolate/análise , Comportamento do Consumidor , Frutas , Paladar
10.
Viruses ; 13(12)2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34960708

RESUMO

The persistent circulation of SARS-CoV-2 represents an ongoing global threat due to the emergence of new viral variants that can sometimes evade the immune system of previously exposed or vaccinated individuals. We conducted a follow-up study of adult individuals that had received an inactivated SARS-CoV-2 vaccine, evaluating antibody production and neutralizing activity over a period of 6 months. In addition, we performed mice immunization with inactivated SARS-CoV-2, and evaluated the immune response and pathological outcomes against Gamma and Zeta variant infection. Vaccinated individuals produced high levels of antibodies with robust neutralizing activity, which was significantly reduced against Gamma and Zeta variants. Production of IgG anti-S antibodies and neutralizing activity robustly reduced after 6 months of vaccination. Immunized mice demonstrated cellular response against Gamma and Zeta variants, and after viral infection, reduced viral loads, IL-6 expression, and histopathological outcome in the lungs. TNF levels were unchanged in immunized or not immunized mice after infection with the Gamma variant. Furthermore, serum neutralization activity rapidly increases after infection with the Gamma and Zeta variants. Our data suggest that immunization with inactivated WT SARS-CoV-2 induces a promptly responsive cross-reactive immunity response against the Gamma and Zeta variants, reducing COVID-19 pathological outcomes.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Vacinas de Produtos Inativados/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Proteção Cruzada , Citocinas/metabolismo , Seguimentos , Humanos , Imunização , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Vacinas de Produtos Inativados/administração & dosagem , Carga Viral
11.
Diagnostics (Basel) ; 11(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34441258

RESUMO

A retrospective study was conducted on pathologically diagnosed arrhythmogenic cardiomyopathy (ACM) from consecutive cases over the past 34 years (n = 1109). The anatomo-pathological analyses were performed on 23 hearts diagnosed as ACM (2.07%) from a series of 1109 suspected cases, while histopathological data of cardiac conduction system (CCS) were available for 15 out of 23 cases. The CCS was removed in two blocks, containing the following structures: Sino-atrial node (SAN), atrio-ventricular junction (AVJ) including the atrio-ventricular node (AVN), the His bundle (HB), the bifurcation (BIF), the left bundle branch (LBB) and the right bundle branch (RBB). The ACM cases consisted of 20 (86.96%) sudden unexpected cardiac death (SUCD) and 3 (13.04%) native explanted hearts; 16 (69.56%) were males and 7 (30.44%) were females, ranging in age from 5 to 65 (mean age ± SD, 36.13 ± 16.06) years. The following anomalies of the CCS, displayed as percentages of the 15 ACM SUCD cases in which the CCS has been fully analyzed, have been detected: Hypoplasia of SAN (80%) and/or AVJ (86.67%) due to fatty-fibrous involvement, AVJ dispersion and/or septation (46.67%), central fibrous body (CFB) hypoplasia (33.33%), fibromuscular dysplasia of SAN (20%) and/or AVN (26.67%) arteries, hemorrhage and infarct-like lesions of CCS (13.33%), islands of conduction tissue in CFB (13.33%), Mahaim fibers (13.33%), LBB block by fibrosis (13.33%), AVN tongue (13.33%), HB duplicity (6.67%%), CFB cartilaginous meta-hyperplasia (6.67%), and right sided HB (6.67%). Arrhythmias are the hallmark of ACM, not only from the fatty-fibrous disruption of the ventricular myocardium that accounts for reentrant ventricular tachycardia, but also from the fatty-fibrous involvement of CCS itself. Future research should focus on application of these knowledge on CCS anomalies to be added to diagnostic criteria or at least to be useful to detect the patients with higher sudden death risks.

12.
Diagnostics (Basel) ; 11(8)2021 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-34441416

RESUMO

At some point in history, medicine was integrated with pathology, more precisely, with pathological anatomy [...].

13.
Am J Pathol ; 191(7): 1154-1164, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964216

RESUMO

Severe acute respiratory syndrome coronavirus 2, the etiologic agent of coronavirus disease 2019 (COVID-19) and the cause of the current pandemic, produces multiform manifestations throughout the body, causing indiscriminate damage to multiple organ systems, particularly the lungs, heart, brain, kidney, and vasculature. The aim of this review is to provide a new assessment of the data already available for COVID-19, exploring it as a transient molecular disease that causes negative regulation of angiotensin-converting enzyme 2, and consequently, deregulates the renin-angiotensin-aldosterone system, promoting important changes in the microcirculatory environment. Another goal of the article is to show how these microcirculatory changes may be responsible for the wide variety of injury mechanisms observed in different organs in this disease. The new concept of COVID-19 provides a unifying pathophysiological picture of this infection and offers fresh insights for a rational treatment strategy to combat this ongoing pandemic.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/metabolismo , Regulação para Baixo , Microcirculação/fisiologia , Sistema Renina-Angiotensina/fisiologia , Enzima de Conversão de Angiotensina 2/genética , COVID-19/genética , COVID-19/patologia , Humanos
14.
Front Pharmacol ; 12: 675287, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025433

RESUMO

Coronavirus disease 2019 (COVID-19) is an infectious disease that rapidly spread throughout the world leading to high mortality rates. Despite the knowledge of previous diseases caused by viruses of the same family, such as MERS and SARS-CoV, management and treatment of patients with COVID-19 is a challenge. One of the best strategies around the world to help combat the COVID-19 has been directed to drug repositioning; however, these drugs are not specific to this new virus. Additionally, the pathophysiology of COVID-19 is highly heterogeneous, and the way of SARS-CoV-2 modulates the different systems in the host remains unidentified, despite recent discoveries. This complex and multifactorial response requires a comprehensive therapeutic approach, enabling the integration and refinement of therapeutic responses of a given single compound that has several action potentials. In this context, natural compounds, such as Curcumin, have shown beneficial effects on the progression of inflammatory diseases due to its numerous action mechanisms: antiviral, anti-inflammatory, anticoagulant, antiplatelet, and cytoprotective. These and many other effects of curcumin make it a promising target in the adjuvant treatment of COVID-19. Hence, the purpose of this review is to specifically point out how curcumin could interfere at different times/points during the infection caused by SARS-CoV-2, providing a substantial contribution of curcumin as a new adjuvant therapy for the treatment of COVID-19.

15.
Oxid Med Cell Longev ; 2021: 6667074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927797

RESUMO

Sepsis-induced myocardial dysfunction considerably increases mortality risk in patients with sepsis. Previous studies from our group have shown that sepsis alters the expression of structural proteins in cardiac cells, resulting in cardiomyocyte degeneration and impaired communication between cardiac cells. Caveolin-3 (CAV3) is a structural protein present in caveolae, located in the membrane of cardiac muscle cells, which regulates physiological processes such as calcium homeostasis. In sepsis, there is a disruption of calcium homeostasis, which increases the concentration of intracellular calcium, which can lead to the activation of potent cellular enzymes/proteases which cause severe cellular injury and death. The purpose of the present study was to test the hypotheses that sepsis induces CAV3 overexpression in the heart, and the regulation of L-type calcium channels directly relates to the regulation of CAV3 expression. Severe sepsis increases the expression of CAV3 in the heart, as immunostaining in our study showed CAV3 presence in the cardiomyocyte membrane and cytoplasm, in comparison with our control groups (without sepsis) that showed CAV3 presence predominantly in the plasma membrane. The administration of verapamil, an L-type calcium channel inhibitor, resulted in a decrease in mortality rates of septic mice. This effect was accompanied by a reduction in the expression of CAV3 and attenuation of cardiac lesions in septic mice treated with verapamil. Our results indicate that CAV3 has a vital role in cardiac dysfunction development in sepsis and that the regulation of L-type calcium channels may be related to its expression.


Assuntos
Caveolina 3/metabolismo , Coração/efeitos dos fármacos , Sepse/tratamento farmacológico , Verapamil/uso terapêutico , Animais , Canais de Cálcio Tipo L , Humanos , Masculino , Camundongos , Sepse/mortalidade , Sepse/patologia , Análise de Sobrevida , Verapamil/farmacologia
16.
Nat Commun ; 11(1): 5433, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33116136

RESUMO

Scorpion envenomation is a leading cause of morbidity and mortality among accidents caused by venomous animals. Major clinical manifestations that precede death after scorpion envenomation include heart failure and pulmonary edema. Here, we demonstrate that cardiac dysfunction and fatal outcomes caused by lethal scorpion envenomation in mice are mediated by a neuro-immune interaction linking IL-1 receptor signaling, prostaglandin E2, and acetylcholine release. IL-1R deficiency, the treatment with a high dose of dexamethasone or blockage of parasympathetic signaling using atropine or vagotomy, abolished heart failure and mortality of envenomed mice. Therefore, we propose the use of dexamethasone administration very early after envenomation, even before antiserum, to inhibit the production of inflammatory mediators and acetylcholine release, and to reduce the risk of death.


Assuntos
Acetilcolina/metabolismo , Dinoprostona/biossíntese , Insuficiência Cardíaca/etiologia , Receptores Tipo I de Interleucina-1/metabolismo , Venenos de Escorpião/toxicidade , Animais , Antivenenos/administração & dosagem , Atropina/farmacologia , Dexametasona/administração & dosagem , Modelos Animais de Doenças , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/fisiopatologia , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Cardiovasculares , Neuroimunomodulação/efeitos dos fármacos , Receptores Tipo I de Interleucina-1/deficiência , Receptores Tipo I de Interleucina-1/genética , Picadas de Escorpião/complicações , Escorpiões , Transdução de Sinais , Vagotomia
17.
Front Immunol ; 11: 1265, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32774333

RESUMO

Type 2 diabetes (T2D) is a metabolic disease characterized by increased inflammation, NOD-like receptors (NLRs) activation and gut dysbiosis. Our research group has recently reported that intestinal Th17 response limits gut dysbiosis and LPS translocation to visceral adipose tissue (VAT), protecting against metabolic syndrome. However, whether NOD2 receptor contributes intestinal Th17 immunity, modulates dysbiosis-driven metabolic tissue inflammation, and obesity-induced T2D remain poorly understood. In this context, we observed that mice lacking NOD2 fed a high-fat diet (HFD) display severe obesity, exhibit greater adiposity, and more hepatic steatosis compared to HFD-fed wild-type (WT) mice. In addition, they develop increased hyperglycemia, worsening of glucose intolerance, and insulin resistance. Notably, the deficiency of NOD2 causes a deviation from M2 macrophage and regulatory T cells (Treg) to M1 macrophage and mast cells into VAT compared to WT mice fed HFD. An imbalance was also observed in Th17/Th1 cell populations, with reduced IL-17 and IL-22 gene expression in the mesenteric lymph nodes (MLNs) and ileum, respectively, of NOD2-deficient mice fed HFD. 16S rRNA sequencing indicates lower richness, alpha diversity, and a depletion of Allobaculum, Lactobacillus, and enrichment with Bacteroides genera in these mice compared to HFD-fed WT mice. These alterations were associated with disrupted tight-junctions expression, augmented serum LPS, and bacterial translocation into VAT. Overall, NOD2 activation is required for a protective Th17 over Th1 immunity in the gut, which seems to decrease gram-negative bacteria outgrowth in gut microbiota, attenuating the endotoxemia, metainflammation, and protecting against obesity-induced T2D.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Diabetes Mellitus Tipo 2/etiologia , Diabetes Mellitus Tipo 2/metabolismo , Inflamação/etiologia , Inflamação/metabolismo , Proteína Adaptadora de Sinalização NOD2/deficiência , Animais , Biomarcadores , Dieta Hiperlipídica , Modelos Animais de Doenças , Microbioma Gastrointestinal/imunologia , Perfilação da Expressão Gênica , Glucose/metabolismo , Imuno-Histoquímica , Insulina/sangue , Insulina/metabolismo , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Ilhotas Pancreáticas/metabolismo , Leucócitos/imunologia , Leucócitos/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Knockout , Obesidade/etiologia , Obesidade/metabolismo , Permeabilidade , Transdução de Sinais
18.
Biomolecules ; 10(6)2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32517114

RESUMO

Histoplasma capsulatum is the agent of histoplasmosis, one of the most frequent mycoses in the world. The infection initiates with fungal spore inhalation, transformation into yeasts in the lungs and establishment of a granulomatous disease, which is characterized by a Th1 response. The production of Th1 signature cytokines, such as IFN-γ, is crucial for yeast clearance from the lungs, and to prevent dissemination. Recently, it was demonstrated that IL-17, a Th17 signature cytokine, is also important for fungal control, particularly in the absence of Th1 response. IL-22 is another cytokine with multiple functions on host response and disease progression. However, little is known about the role of IL-22 during histoplasmosis. In this study, we demonstrated that absence of IL-22 affected the clearance of yeasts from the lungs and increased the spreading to the spleen. In addition, IL-22 deficient mice (Il22-/-) succumbed to infection, which correlated with reductions in the numbers of CD4+ IFN-γ+ T cells, reduced IFN-γ levels, and diminished nitric oxide synthase type 2 (NOS2) expression in the lungs. Importantly, treatment with rIFN-γ mitigated the susceptibility of Il22-/- mice to H. capsulatum infection. These data indicate that IL-22 is crucial for IFN-γ/NO production and resistance to experimental histoplasmosis.


Assuntos
Histoplasmose/imunologia , Interferon gama/imunologia , Interleucinas/imunologia , Animais , Feminino , Histoplasmose/patologia , Interferon gama/biossíntese , Interleucinas/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/biossíntese , Óxido Nítrico/imunologia , Interleucina 22
19.
Cells ; 9(4)2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32295112

RESUMO

Pattern recognition receptors (PRRs), such as Nod2, Nlrp3, Tlr2, Trl4, and Tlr9, are directly involved in type 1 diabetes (T1D) susceptibility. However, the role of the cytosolic DNA sensor, AIM2, in T1D pathogenesis is still unknown. Here, we demonstrate that C57BL/6 mice lacking AIM2 (AIM2-/-) are prone to streptozotocin (STZ)-induced T1D, compared to WT C57BL/6 mice. The AIM2-/- mice phenotype is associated with a greater proinflammatory response in pancreatic tissues, alterations in gut microbiota and bacterial translocation to pancreatic lymph nodes (PLNs). These alterations are related to an increased intestinal permeability mediated by tight-junction disruption. Notably, AIM2-/- mice treated with broad-spectrum antibiotics (ABX) are protected from STZ-induced T1D and display a lower pancreatic proinflammatory response. Mechanistically, the AIM2 inflammasome is activated in vivo, leading to an IL-18 release in the ileum at 15 days after an STZ injection. IL-18 favors RegIIIγ production, thus mitigating gut microbiota alterations and reinforcing the intestinal barrier function. Together, our findings show a regulatory role of AIM2, mediated by IL-18, in shaping gut microbiota and reducing bacterial translocation and proinflammatory response against insulin-producing ß cells, which ultimately results in protection against T1D onset in an STZ-induced diabetes model.


Assuntos
Proteínas de Ligação a DNA/uso terapêutico , Diabetes Mellitus Experimental/genética , Imunidade Inata/genética , Animais , Homeostase , Humanos , Interleucina-18/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Toxins (Basel) ; 12(3)2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150895

RESUMO

Tityus serrulatus causes numerous scorpion envenomation accidents and deaths worldwide. The symptoms vary from local to systemic manifestations, culminating in pulmonary edema and cardiogenic shock. Among these events, transitory hyperglycemia is a severe manifestation that influences pulmonary edema, hemodynamic alterations, and cardiac disturbances. However, the molecular mechanism that leads to increased glucose levels after T. serrulatus envenomation remains unknown. This study aimed to investigate our hypothesis that hyperglycemia due to scorpion envenomation involves inflammatory signaling in the pancreas. The present study showed that T. serrulatus venom induces the production of IL-1α and IL-1ß in the pancreas, which signal via IL-1R and provoke nitric oxide (NO) production as well as edema in ß-cells in islets. Il1r1-/- mice were protected from transitory hyperglycemia and did not present disturbances in insulin levels in the serum. These results suggest that the pathway driven by IL-1α/IL-1ß-IL-1R-NO inhibits insulin release by ß-cells, which increases systemic glucose concentration during severe scorpion envenomation. A supportive therapy that inhibits NO production, combined with antiserum, may help to prevent fatal outcomes of scorpion envenomation. Our findings provide novel insights into the design of supportive therapy with NO inhibitors combined with antiscorpion venom serum to overcome fatal outcomes of scorpion envenomation.


Assuntos
Hiperglicemia/metabolismo , Óxido Nítrico/metabolismo , Pâncreas/efeitos dos fármacos , Receptores de Interleucina-1/metabolismo , Venenos de Escorpião/toxicidade , Animais , Insulina/metabolismo , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pâncreas/metabolismo , Pâncreas/patologia , Receptores de Interleucina-1/genética , Picadas de Escorpião/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...